A brief description of the topic:
Power electronics (PE) is a key enabling technology for fast-growing and emerging applications including electric vehicles (EVs), on- and offshore renewable energy (RE), distributed energy resources (DERs), and smart grid (SG), solid-state transformers (SSTs), switched-capacitor converters (SCCs), wireless power transfer (WPT), aviation and space (A&SS), information technology (IT), internet of things (IoTxs), and high-performance, cognitive, and edge computation (HPCEC), and ultrafast protection (UP) to name a few. This necessitates advancements in PE-application-specific semiconductor devices based on new material bases, packaging, control and switching technologies that define new performance boundaries beyond silicon-based technologies. Fast emerging ultra-wide-bandgap (UWBG/WBG) PE devices owing to their superior properties are deemed to be game-changing technologies that are creating and propelling new/prospective applications aside from advancing the existing applications. To do so, UWBG/WBG semiconductors need new (e.g., vertical, optical, heterostructure) device structures, novel (e.g., ultra-low parasitic inductance, heterogeneous integration, SoC/SIP/SoM) packaging methodologies, and novel control, switching, and triggering techniques (e.g., to yield optimal tradeoff among current/voltage slew rate, electromagnetic interference (EMI), and switching loss). Additional open questions remain on the dynamic characteristics, power losses, stability, reliability, robustness, and conditional monitoring of advanced UWBG/WBG power devices, and their application spaces and new capabilities that can be brought to PE. Finally, to mitigate the detrimental impacts of PE-related radiative and conductive EMI effects associated with rapid-switching UWBG/WBG devices, advanced EMI theories, EMI measurement and diagnostic approaches, and various EMI suppression techniques needs further exploration and practical solutions.

The objective of the special section:
The objective of this special section in TPEL is to provide a collection of breakthroughs, informative, and tutorial publications encompassing the areas of UWBG/WBG device, packaging, control, EMI, and applications for PE. To be considered for review in TPEL, the review manuscripts must demonstrate the utility of the work for PE and its applications. Manuscript with sole focus on materials, device structures, physics of semiconductors, control, EMI and characterization without utility for PE metrics and/or PE systems, may will be returned/rejected without review.

A list of subtopics of interest, including emerging topics and topics related to recently-developed technologies:
- Novel and advancements in UWBG/WBG unipolar/bipolar device structures including medium/high voltage devices, high/ultra-high frequency devices, high ambient/junction temperature devices, vertical devices, heterostructure devices, optical and photoconductive devices that demonstrate the practical utility for PE
- Ultra-low-inductance and robust thermal packaging, multi-die integration, heterogeneous two and three dimensional integration, optoelectronic packaging, waveguides, system of chip/package/module (SoC/SIP/SoM)
- Device-level electrical and/or optical control, modulation, and gate drive for loss mitigation, EMI mitigation, high current, long-term reliability, and voltage slew rates, integrated circuit and system on chip level realization, ultrafast and robust device dynamics, and electrical/thermal parameter sensing
- UWBG/WBG stability, reliability and robustness, device and module switching characteristics and power loss studies, circuit- and system-level modeling, lifetime assessment and evaluation, condition monitoring and prognosis
- EMI (conductive, near-field, radiative) modeling, measurement, diagnosis, passive and active filtering and suppression, and printed-circuit-board and integrated-circuit layout
- Radically new PE applications, SoA applications including but not limited to EVs, RE, DERs, and SG, SSTs, SCCs, WPT, A&SS, IT, IoTxs, HPCEC, and UP showing improvements in performance, robustness, resilience, and reliability, medium- and high-voltage applications, ultrafast applications
- Review or survey on recent advances in areas encompassing the above-mentioned research area(s)

All manuscripts must be submitted through ScholarOne at https://mc.manuscriptcentral.com/tpel-ieee. Submissions must be clearly marked “Ultrawide/Wide Bandgap Device, Packaging, Control, EMI, and Applications for Power Electronics” on the cover page. When uploading your paper, please select your manuscript type “Special Section.” Refer to https://www.ieee-pes.org/ for general information about electronic submission through ScholarOne. Manuscripts submitted for the special section will be reviewed separately and will be handled by the guest editorial board noted below. Timeline:
- March 31st, 2024 – Manuscripts Submission Deadline
- May 15th, 2024 – Revised Manuscripts Submission Deadline
- June 30th, 2024 – Final Acceptance Notification
- July 31st, 2024 – Manuscripts Forwarded to IEEE for Publication
- October 31st, 2024 – Special Section Appears in IEEE TPEL

Deadline for Submission of Manuscript: March 31, 2024
Guest Editors:
1. Sudip K. Mazumder, University of Illinois Chicago, USA, Organizer
2. John Shen, Simon Fraser University, Canada
3. Shuo Wang, University of Florida, USA

Guest Associate Editors:
1. Alireza Mojab, Infineon Technologies, USA
2. Ankit Gupta, SpaceX, USA
3. Can Bayram, Univ. of Illinois Urbana-Champaign, USA
4. Cong Li, GE Global Research Center, USA
5. David Sheridan, Alpha Omega Semiconductor, USA
6. Debjanjan Chatterjee, ABB Corporate Research, USA
7. Dong Dong, Virginia Tech, USA
8. Dong Jiang, Huazhong University of Science and Technology, China
9. Eckart Hoene, Fraunhofer Institute IZM, Berlin, Germany
10. Florin Udrea, Cambridge University, UK
11. Fang Luo, Stony Brook University, USA
12. Flavia Grassi, Politecnico di Milano, Italy
13. Frank Leiferink, University of Twente, Netherlands
14. G. Q. Lu, Virginia Tech, USA
15. Henglin Chen, Zhejiang University, China
16. Hong Li, Beijing Jiaotong University, China
17. Jack D. Flicker, Sandia National Laboratories, USA
18. Jacob Leach, Kyma Technologies, USA
19. Jifa Hao, Google, USA
20. Jin Wang, Ohio State University, USA
21. Junping He, Harbin Institute of Technology, China
22. Junpeng Ji, Xi'an University of Technologies, China
23. Kevin Chen, Hong Kong University of Science and Technology, China
24. Kuang Sheng, Zhejiang University, China
25. Luca Dalessandro, ETIX GmbH, Switzerland
26. Matteo Meneghini, University of Padova, Italy
27. Michelle Liu, Tesla Inc, USA
28. Rajib Goswami, Coventry University, UK
29. Robert Kaplar, Sandia National Laboratories, USA
30. Rudy Wang, Delta Electronics, USA
31. Sei-Hyung Ryu, Wolfspeed, USA
32. Siddharth Rajan, Ohio State University, USA
33. Srabanti Chowdhury, Stanford University, USA
34. Sriman Krishnamoorthy, U. of California at Santa Barbara, USA
35. Uttam Singisetti, University of Buffalo, USA
36. Wataru Saito, Kyushu University, Japan
37. Wenjie Chen, Xi'an Jiaotong University, China
38. Yuhao Zhang, Virginia Tech, USA
39. Zhong Chen, University of Arkansas, USA
40. Zheng Luo, Monolithic Power Systems, USA